Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.
نویسندگان
چکیده
The reaction of zero-valent iron or ferrous iron with oxygen produces reactive oxidants capable of oxidizing organic compounds. However, the oxidant yield in the absence of ligands is too low for practical applications. The addition of oxalate, nitrilotriacetic acid (NTA), or ethylenediaminetetraacetic acid (EDTA) to oxygen-containing solutions of nanoparticulate zero-valent iron (nZVI) significantly increases oxidant yield, with yields approaching their theoretical maxima near neutral pH. These ligands improve oxidant production by limiting iron precipitation and by accelerating the rates of key reactions, including ferrous iron oxidation by oxygen and hydrogen peroxide. Product yields indicate that the oxic nZVI system produces hydroxyl radical (OH*) over the entire pH range in the presence of oxalate and NTA. In the presence of EDTA, probe compound oxidation is attributed to OH under acidic conditions and a mixture of OH* and ferryl ion (Fe[IV]) at circumneutral pH.
منابع مشابه
Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells.
To identify the mechanism through which nanoparticulate zero-valent iron (nZVI; Fe0(s)) damages cells, a series of experiments were conducted in which nZVI in phosphate-buffered saline (PBS) was exposed to oxygen in the presence and absence of human bronchial epithelial cells. When nZVI is added to PBS, a burst of oxidants is produced as Fe0 and ferrous iron (Fe[II]) are converted to ferric iro...
متن کاملComment on "Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen".
The corrosion of zero-valent iron (Fe0(s)) by oxygen (O2) can lead to the oxidation of organic compounds. To gain insight into the reaction mechanism and to assess the nature of the oxidant, the oxidation of methanol, ethanol, 2-propanol, and benzoic acid by the reaction of nanoparticulate zero-valent iron (nZVI) or ferrous iron (Fe[II]) with O2 in the absence of ligands was studied. At pH valu...
متن کاملEnhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen.
Nanoparticulate zero-valent iron (nZVI) rapidly reacts with oxygen to produce strong oxidants capable of transforming organic contaminants in water. However,the low yield of oxidants with respect to the iron added normally limits the application of this system. Bimetallic nickel-iron nanoparticles (nNi-Fe; i.e., Ni-Fe alloy and Ni-coated Fe nanoparticles) exhibited enhanced yields of oxidants c...
متن کاملComment on "Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen".
In the presence of oxygen, organic compounds can be oxidized by zerovalent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increa...
متن کاملBactericidal effect of zero-valent iron nanoparticles on Escherichia coli.
Zero-valent iron nanoparticles (nano-Fe0) in aqueous solution rapidly inactivated Escherichia coli. A strong bactericidal effect of nano-Fe0 was found under deaerated conditions, with a linear correlation between log inactivation and nano-Fe0 dose (0.82 log inactivation/mg/L nano-Fe0 x h). The inactivation of E. coli under air saturation required much higher nano-Fe0 doses due to the corrosion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 42 18 شماره
صفحات -
تاریخ انتشار 2008